5 research outputs found

    An FPGA-Based On-Device Reinforcement Learning Approach using Online Sequential Learning

    Full text link
    DQN (Deep Q-Network) is a method to perform Q-learning for reinforcement learning using deep neural networks. DQNs require a large buffer and batch processing for an experience replay and rely on a backpropagation based iterative optimization, making them difficult to be implemented on resource-limited edge devices. In this paper, we propose a lightweight on-device reinforcement learning approach for low-cost FPGA devices. It exploits a recently proposed neural-network based on-device learning approach that does not rely on the backpropagation method but uses OS-ELM (Online Sequential Extreme Learning Machine) based training algorithm. In addition, we propose a combination of L2 regularization and spectral normalization for the on-device reinforcement learning so that output values of the neural network can be fit into a certain range and the reinforcement learning becomes stable. The proposed reinforcement learning approach is designed for PYNQ-Z1 board as a low-cost FPGA platform. The evaluation results using OpenAI Gym demonstrate that the proposed algorithm and its FPGA implementation complete a CartPole-v0 task 29.77x and 89.40x faster than a conventional DQN-based approach when the number of hidden-layer nodes is 64

    An On-Device Federated Learning Approach for Cooperative Anomaly Detection

    Full text link
    Most edge AI focuses on prediction tasks on resource-limited edge devices while the training is done at server machines. However, retraining or customizing a model is required at edge devices as the model is becoming outdated due to environmental changes over time. To follow such a concept drift, a neural-network based on-device learning approach is recently proposed, so that edge devices train incoming data at runtime to update their model. In this case, since a training is done at distributed edge devices, the issue is that only a limited amount of training data can be used for each edge device. To address this issue, one approach is a cooperative learning or federated learning, where edge devices exchange their trained results and update their model by using those collected from the other devices. In this paper, as an on-device learning algorithm, we focus on OS-ELM (Online Sequential Extreme Learning Machine) to sequentially train a model based on recent samples and combine it with autoencoder for anomaly detection. We extend it for an on-device federated learning so that edge devices can exchange their trained results and update their model by using those collected from the other edge devices. This cooperative model update is one-shot while it can be repeatedly applied to synchronize their model. Our approach is evaluated with anomaly detection tasks generated from a driving dataset of cars, a human activity dataset, and MNIST dataset. The results demonstrate that the proposed on-device federated learning can produce a merged model by integrating trained results from multiple edge devices as accurately as traditional backpropagation based neural networks and a traditional federated learning approach with lower computation or communication cost

    On-Device Learning: A Neural Network Based Field-Trainable Edge AI

    Full text link
    In real-world edge AI applications, their accuracy is often affected by various environmental factors, such as noises, location/calibration of sensors, and time-related changes. This article introduces a neural network based on-device learning approach to address this issue without going deep. Our approach is quite different from de facto backpropagation based training but tailored for low-end edge devices. This article introduces its algorithm and implementation on a wireless sensor node consisting of Raspberry Pi Pico and low-power wireless module. Experiments using vibration patterns of rotating machines demonstrate that retraining by the on-device learning significantly improves an anomaly detection accuracy at a noisy environment while saving computation and communication costs for low power.Comment: Power values are updated with a new wireless module from v
    corecore